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Abstract Starting from a time-dependent Schrödinger equation, stationary states of
3D central potentials are obtained. An imaginary-time evolution technique coupled
with the minimization of energy expectation value, subject to the orthogonality con-
straint leads to ground and excited states. The desired diffusion equation is solved
by means of a finite-difference approach to produce accurate wave functions, ener-
gies, probability densities and other expectation values. Applications in case of 3D
isotropic harmonic oscillator, Morse as well the spiked harmonic oscillator are made.
Comparison with literature data reveals that this is able to produce high-quality and
competitive results. The method could be useful for this and other similar potentials of
interest in quantum mechanics. Future and outlook of the method is briefly discussed.

Keywords Imaginary-time evolution · Time-dependent Schrodinger equation ·
Diffusion equation · Spherical symmetry · Spiked oscillator · Excited state

1 Introduction

Applications of quantum mechanics in various branches of physics, chemistry, biol-
ogy, such as atomic, molecular, nuclear physics, particle physics, astrophysics, etc.,
often require solution of Schrödinger equation (SE). The system is characterized by
an external potential term present in the Hamiltonian operator. Leaving aside a few
occasions, such as the well-known harmonic oscillator or Coulomb potential repre-
senting some idealized situations, exact analytical solution in most of these problems
remains elusive. Search for such solutions is appealing and have been pursued by
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a large number of researchers. In recent years, such analytical solutions have been
reported for few more potentials such as Kratzer–Fues potential in N dimension [1],
Mie [2], pseudoharmonic potential in 2D [3], 3D [4] and N-dimension [5], Morse [6],
Pöschl–Teller [7], Manning–Rosen [8,9] and some other diatomic molecular poten-
tials [10]. Nevertheless they are few and far between, and it is imperative that alter-
nate approximation methods be developed. Therefore, a variety of accurate, efficient,
elegant methodologies for such solutions have been put forth over the years. This
encompasses a wide range of analytic, semi-analytic and numerical techniques. The
literature is vast; here we refer to some of the most prominent ones, viz., Nikiforov–
Uvarov method [11], super-symmetric quantum mechanics [12] asymptotic iteration
method [13,14], exact quantization rule [15,16], factorization method [17], wave
function ansatz approach [18,19], generalized pseudospectral method [20,21], proper
quantization rule [22,23], etc.

In all the above mentioned approaches, approximate solutions are obtained starting
from a time-independent SE (TISE). In this work, we are interested in the approxi-
mate solution based on time-dependent Schrödinger equation (TDSE) instead. This is
achieved by transforming the TDSE in imaginary time to a diffusion equation [24], fol-
lowed by a minimization of the energy expectation value to reach the global minimum.
Such a technique was adopted in connection with a random-walk simulation of the
solution of ab initio SE for electronic systems such as, H 2 P , H+

3 (D3h) 1 A1, H2
3�+

u ,
H4

1�+
g , Be 1S, CH4, etc., [25–27]. In a separate work, eigenvalues, eigenfunctions

of TDSE were obtained by evolving the same in imaginary time and representing the
Hamiltonian in a grid by a relaxation method [28]. Representative applications were
presented for Morse potential, Hénon–Heiles system and weakly bound states of He
on a Pt surface. Another interesting route (the so-called spectral method), based on the
grid, to exploit TDSE for obtaining eigenvalues, eigenfunctions was adopted in [29],
whereby the initial wave function was propagated for long time. Then eigenvalues are
obtained by performing a Fourier transform of the auto-correlation function of propa-
gated wave with the initial wave function. In yet another development, imaginary-time
evolution technique was applied for direct calculation of ground-state densities and
other properties of noble gas atoms, ions such as He, Be++, Ne, Ar, Kr, Xe, as well
as molecules like H2, HeH+, He++

2 , from the solution of a single TD quantum fluid
dynamical equation of motion [30–32]. Later, ground as well as excited-state ener-
gies, densities and other expectation values of 1D anharmonic and double-well [33],
multiple-well [34] and self-interacting nonlinear [35] oscillators were obtained with
impressive accuracy by transforming the relevant SE into a diffusion equation in
imaginary time. Extension was made to ground and low-lying excited states of dou-
ble well potentials in 2D [36]. Furthermore, during the same time period, a finite-
difference time domain approach was suggested for solution of the respective TDSE
in imaginary time. Applications were made to the problems of infinite square potential,
quantum anharmonic oscillators in 1D, 2D, 3D, as well as hydrogen atom [37] with
reasonable success. Later, this scheme was employed for a charged particle in mag-
netic field [38], and for the computation of thermal density matrix of a single-particle
confined quantum system [39]. An optimized parallelization scheme for solving 3D
SE has been presented lately [40]. Imaginary-time propagation technique has also
been exploited in numerical solution of eigenvalues, eigenfunctions of large matrices
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originating from discretization of linear and non-linear SE by means of split-operator
method [41], and also for large-scale 2D eigenvalue problems in presence of a mag-
netic field [42]. Improved, high-order, imaginary-time propagators for 3D SE have
been proposed [43,44], as well as a fourth order algorithm for solving local SE in a
homogeneous magnetic field [45]. The methodology is reminiscent of the diffusion
quantum Monte Carlo method [46].

In this communication, we report the applications of imaginary-time propagation
method for ground and excited states of some spherically asymmetric 3D potentials.
We follow the implementation used in [30–36] for this purpose. Note that, while for
atoms and molecules in first three references, the diffusion equation originated from an
amalgamation of quantum fluid dynamics and density functional theory, which even-
tually lead to a TD generalized non-linear SE, in the last four references, the same
arose from a TDSE instead. The current work concerns the latter. This method offered
quite good results for ground and excited states of 1D and 2D potentials [33–36].
For spherically symmetric potentials (such as for atoms, as in [30–32]), however, only
ground states were attempted using this approach. Here we include excited states in our
study, that can extend its domain of applicability. After making some experiments on
pedagogical cases like 3D isotropic quantum harmonic oscillator and Morse potential,
we focus on the specific case of spiked harmonic oscillator, for illustration. Because
of their many interesting properties and considerable challenges they pose, these have
been investigated by a number of workers in the past three decades varying in their
complexity and accuracy (see Sect. 3 for details). In particular, we focus on the eigen-
values, position expectation values, radial densities of ground and low-lying excited
states. We consider both non-rotational (� = 0) and rotational (� �= 0) situations.
The article is organized as follows. In Sect. 2, we give an outline of the theoretical
framework and details of numerical implementation. Obtained results are discussed
in Sect. 3 along with a comparison with literature results. Finally a few concluding
remarks are made in Sect. 4.

2 The methodology and numerical implementation

The TDSE of a single particle moving in a time-independent potential field V (r) is:

i
∂

∂t
ψ(r, t) = Hψ(r, t) =

[
−1

2
∇2 + V (r)

]
ψ(r, t), (1)

where H is the Hamiltonian operator consisting of kinetic and potential energy com-
ponents. Here and what follows, we employ atomic units. The general solution can be
expanded in terms of a set of eigenfunctions {φk} and expansion coefficients {ck} as
follows:

ψ(r, t) =
∞∑

k=0

Ckφk(r) exp (−iεk t). (2)

The eigenfunctions φk(r) and eigenvalues εk are obtained from the associated TISE.
Further, k = 0, 1, 2, . . ., represent the ground, first excited state, second excited state
and so on.
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By introducing a Wick rotational transformation from real time to imaginary time
τ = i t , one can write,

− ∂ψ(r, τ )
∂τ

= −1

2
∇2ψ(r, τ )+ V (r)ψ(r, τ ) = Hψ(r, τ ), (3)

whose general solution can be written in following form,

ψ(r, τ ) =
∞∑

k=0

ckφk(r) exp (−εkτ). (4)

Assuming, ε0 < ε1 < ε2 < · · · , for large imaginary time τ , the wave functionψ(r, τ )
will be dominated by the lowest energy state, i.e., the ground state, as given below,

lim
τ→∞ψ(r, τ ) ≈ c0ψ0(r)e−ε0τ . (5)

Therefore, numerically propagating ψ(r, τ ) in sufficiently large imaginary time leads
to the stationary ground-state wave function (provided c0 �= 0), apart from a nor-
malization constant, corresponding to the global minimum 〈ψ(r, τ )|H |ψ(r, τ )〉. This
is a general technique for solving stationary-state eigenvalue problems in quantum
mechanics.

Now let us consider the numerical solution of Eq. (3). In order to accomplish the
time propagation of ψ(r, τ ), one can use a Taylor expansion of ψ(r, τ +	τ) around
time τ (	τ is some finite change in imaginary time),

ψ(r, τ +	τ) =
[

1 +	τ
∂

∂τ
+ (	τ)2

2!
∂2

∂τ 2 + · · ·
]
ψ(r, τ ) = e	τ

∂
∂τ ψ(r, τ ). (6)

From Eq. (3), we see that H = − ∂
∂τ

= −Dτ . Using these, the above equation can be
rewritten as,

ψ(r, τ +	t) = e−	τHψ(r, τ ). (7)

The time-propagator e−	τH is an evolution operator advancing the diffusion function
ψ(r, τ ) from an initial time τ to next time level ψ(r, τ +	τ). It is worth mentioning
that, this is a non-unitary operator; hence normalization ofψ(r, τ ) at an arbitrary time
τ does not automatically guarantee normalization of ψ(r, τ + 	τ) at a future time,
τ +	τ .

At this point, we focus on the important case of central force, which is derived
from a potential energy function that is spherically symmetric, i.e., V (r) = V (r). For
this, we discretize the radial variable r (of spherical polar coordinates) according to
the following,

r j = x2
j

x j = δ + j	x = δ + jh, j = 1, 2, 3, · · · , N . (8)
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Here	x = h denotes grid spacing in radial coordinate, δ is a small number (10−6 a.u.,
in present case), integer j signifies the counter of increment in spatial direction, while
N is the total number of radial points. The operator H , given in spherical polar coor-
dinates, by,

Hr = −1

2

d2

dr2 − 1

r

d

dr
+

[
�(�+ 1)

2r2 + V (r)

]
= −1

2

d2

dr2 − 1

r

d

dr
+ veff(r) (9)

can be recast in transformed x-grid as below [terms in the parenthesis correspond to
veff(r)],

H = − 1

8x2 D2
x − 3

8x3 Dx + veff(r) = aD2
x + bDx + veff(r). (10)

In the above equation, a = − 1
8x2 , b = − 3

8x3 , � signifies the angular momentum

quantum number, while Dx = d
dx , D2

x = d2

dx2 denote 1st, 2nd partial spatial derivatives.
Such a radial grid has been found to be quite effective and successful for Coulombic
systems [30,31], for it provides a finer grid at small r and coarser grid at large r .
Subscripts in derivatives emphasize that these quantities are given in transformed grid
x . In such a grid, Eq. (7) can be expressed as ( j, n identify the increments in space
and time coordinates respectively),

ψ
′(n+1)
j = e−	τHj ψn

j , (11)

where a prime signifies an unnormalized diffusion function. This equation can be
further written in an equivalent symmetric form, given below,

e(	τ/2)Hj ψ
′(n+1)
j = e−(	τ/2)Hj ψn

j . (12)

By making use of Eq. (10), above equation can be further recast into a form, as below,

e(	τ/2)(a D2
x +bDx +veff ) ψ

′(n+1)
j = e−(	τ/2)(a D2

x +bDx +veff
)
ψn

j . (13)

Finally, expanding the exponentials, truncating them after second terms, followed by
an approximation of Dx and D2

x by two- and three-point difference formulas as below,

Dx ψ
n
j ≈ ψn

j+1 − ψn
j−1

	x
,

D2
x ψ

n
j ≈ ψn

j−1 − 2ψn
j + ψn

j+1

2(	x)2
, (14)

a set of N simultaneous equations are obtained as follows:

α jψ
′(n+1)
j−1 + β jψ

′(n+1)
j + γ jψ

′(n+1)
j+1 = ξn

j . (15)
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where the quantities α j , β j , γ j , ζ
n
j are identified as,

α j = − 	τ

16x2
j h2

+ 3	τ

32x3
j h
, β j =1 + 	τ

8x2
j h2

+	τ
2
veff , γ j =− 	τ

16x2
j h2

− 3	τ

32x3
j h
,

ζ n
j =

(
	τ

16x2
j h2

− 3	τ

32x3
j h

)
ψn

j−1 +
(

1 − 	τ

8x2
j h2

− 	τ

2
veff

)
ψn

j

+
(

	τ

16x2
j h2

+ 3	τ

32x3
j h

)
ψn

j+1. (16)

Note that since discretization and truncation occurs on both sides of Eq. (13), can-

cellation of error may occur. Here, ψ
′(n+1)
j−1 , ψ

′(n+1)
j , ψ

′(n+1
j+1 denote the unnormalized

diffusion functions at time τn+1 at radial grids x j−1, x j , x j+1 respectively. The quan-
tities α j , β j , γ j and ξn

j are identical to those appearing in [31] except the obvious dif-
ferences in veff . For the sake of completeness, however, we provide them here. As can
be seen, these are expressed in terms of x2

j , x3
j , as well as the space and time spacings

	x ,	τ , while veff entering in β j and ξn
j only. Also note that ξn

j requires knowledge of
ψn

j−1, ψ
n
j , ψ

n
j+1, the normalized diffusion functions at radial grids x j−1, x j and x j+1

respectively at time step τn . Equation (15) may further be rewritten in a convenient,
tridiagonal matrix form,

⎡
⎢⎢⎢⎢⎢⎢⎣

β1 γ1 (0)
α2 β2 γ2

. . .
. . .

. . .

. . .
. . .

. . . γN−1
(0) αN βN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ
′(n+1)
1

ψ
′(n+1)
2
...

ψ
′(n+1)
N−1

ψ
′(n+1)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ξn
1
ξn

2
...

ξn
N−1
ξn

N

⎤
⎥⎥⎥⎥⎥⎦
. (17)

This can be efficiently solved for {ψ ′(n+1)
j } by using a modified Thomas algorithm [47].

Overall procedure of the calculation then involves following sequence of steps.
At time step n = 0, an initial guess of the wave function ψ0

j is made for all j .
This is then propagated in accordance with Eq. (7) following the procedure described
above to obtain ψ

′(n+1) at (n + 1)th time step. At each time step, the wave function
becomes smaller as r assumes large values and finally tends to zero as r goes to infinity.
Setting them to zero for large r was also found to be equally good provided it covered
a sufficiently long radial distance. For an excited state calculation, ψ0

j needs to be
orthogonalized to all lower states. Several orthogonalization schemes are available;
here we have employed the widely used Gram–Schmidt method [48]. It is known that,
while for smaller number of states, the method is generally accurate, with increase
in number of states, however, this tends to introduce numerical inaccuracy. Since in
present work, we are mostly concerned with ground and low-lying states, this therefore
causes no significant impact on the results obtained. Then ψ

′(n+1) is normalized to
ψ(n+1) and the energy expectation values calculated as ε0 = 〈ψ(n+1)|H |ψ(n+1)〉. If
the difference in energy between two consecutive time steps,	ε = 〈H〉(n+1)−〈H〉n ,
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drops below a certain prescribed limit, then the diffusion function ψ(n+1)
j is stored

as the corresponding solution of Hamiltonian H . Otherwise, ψ(n+2)
j is calculated

and above steps repeated until 	ε reaches such limit. In this study, a tolerance of
10−12 was set for energy while 5001 radial grid points were used uniformly. Once the
diffusion function reaches the desired convergence in this way, ψ

′(n+1) is normalized
toψ(n+1), from which the various properties of interest, such as the expectation values,
etc., may be obtained as: 〈A〉(n+1) = 〈ψ(n+1)|A|ψ(n+1)〉. Note that, for excited-state
calculation, diffusion function must remain orthogonal to all lower states at all time
steps, not just at initial time step. Continuing this procedure, one could then obtain
first excited state ε1, second excited state ε2, third excited state ε2, and so on. The grid
spacing was adjusted according to the problem, as dictated by nature of the particular
potential under study. This is mentioned at appropriate places in the discussion that
follow. Overlap and energy integrals at each time step were evaluated by standard
Newton–Cotes quadrature, while finite-difference formulas were used for the spatial
derivatives [49]. The trial functions for even-n and odd-n states were chosen to be
simple exponential functions of e−r and re−r type respectively.

3 Results and discussion

At first, we present some specimen results to test the validity and performance of our
method. First one is the familiar 3D spherical quantum harmonic oscillator, which is
an exactly solvable system. Table 1 gives six lowest states corresponding to rotational
quantum number � = 0. At this point, it is to be noted that all results reported in
all tables throughout the article are truncated and not rounded-off. Therefore, all the
entries are taken to be correct up to the place they are presented. These calculations
are performed in a radial box size of 10 a.u. Not very exhaustive, but a few sample
calculations were made to gauge the variations with respect to grid parameters. In
general, good-quality results could be obtained with even smaller number of points,
such as 501 or so, and accuracy could be improved even further (from reported values)
by 2–3 decimal places by increasing number of radial points from current values.
These are briefly touched upon in a following paragraph. However, we have not made

Table 1 Calculated eigenvalues, radial expectation values, normalization and virial ratios for six lowest
states of spherical quantum harmonic oscillator corresponding to � = 0

Energya 〈r−2〉 〈r−1〉 〈r0〉 〈r1〉 〈r2〉 〈V 〉/〈T 〉
1.49999999 2.000000 1.128379 1.000000 1.128379 1.499999 0.999999

3.4999999 2.000000 0.940316 1.000000 1.692569 3.499999 0.999999

5.4999999 1.99999 0.83688 1.000000 2.11571 5.50000 1.000000

7.4999999 2.00000 0.76770 0.99999 2.46833 7.49999 0.999999

9.4999999 1.99998 0.71668 1.00000 2.77689 9.49999 1.00001

11.499999 2.00000 0.67678 1.00000 3.05456 11.5000 1.00000

a The exact energies [50] of six states are 1.5, 3.5, 5.5, 7.5, 9.5 and 11.5 respectively

123



2652 J Math Chem (2014) 52:2645–2662

Table 2 Calculated eigenvalues (a.u.) in Morse potential (left panel) and ground states of charged harmonic
oscillator (right panel) along with literature results

Morse oscillator Charged harmonic oscillator (α = 1)

n Energy (PR) Energy (reference) λ Energy (PR) Energy (exacta)

0 −18.42893218 −18.42893218b,c,d 0 1.49999999 1.5

1 −8.2867965 −8.2867965b,c,d 2 2.499999999 2.5

2 −2.1446609 −2.1446609b,c,d √
20 3.499999999 3.5

3 −0.002525 −0.002525b,c,d
√

30 + 6
√

17 4.499999999 4.5√
70 + 6

√
57 5.499999999 5.5

14.450001026966 6.500000000 6.5

18.503131410003 7.500000000 7.5

PR present result
a Reference [51]. These results have been divided by 2 to take care of a 2 factor
b Exact result, Ref. [52]
c B-Splines result, Ref. [53]
d Generalized pseudospectral result, Ref. [21]

any attempt to optimize the grid here, as our primary objective in this work is to
demonstrate the capability and appropriateness of this method in context of physically
important situations. As already known, energy levels of isotropic harmonic oscillator
are given by: Ek,� = (k + � + 3

2 ) = (m + 3
2 )a.u., where k is zero or any even

positive integer, � can be zero or any positive integer, so that m can take on all integral
values, zero or positive. Therefore the two quantum numbers �,m must have same
parity [50]. We see that the present results are in excellent agreement with exact values
for all states. Additionally, the position expectation values of these states in columns
2–6 can also be obtained analytically. We have verified 〈r−2〉, 〈r−1〉, 〈r1〉 and 〈r2〉
for the first two states. For ground state (k = m = 0; � = 0) these are: 2, 2√

π
, 2√

π

and 3
2 , while for first excited state (k = m = 2; � = 0), these values are 2, 5

3
√
π
, 3√

π
,

15
2 respectively. Present calculated values are in good agreement with these estimates.

As a further test on quality of our eigenfunctions, numerically obtained normalization
and virial ratios are also provided in fourth and last columns respectively. For the nth
stationary state of a 3D quantum harmonic oscillator, the latter can be obtained from,

d

dt
〈r·p〉 = i

h̄
〈[H, r·p]〉 = 2〈T 〉 − 〈r·∇V 〉 = 2〈T 〉 − 2〈V 〉 = 0, (18)

so that 〈V 〉
〈T 〉 = 1. This further establishes the reliability and strength of our present

method.
In Table 2, we examine two more special cases where exact analytical results are

available. First one is the so-called Morse potential having following functional form
[52]:

V (r) = 25(e−4(r−3) − 2e−2(r−3)), En = −
[

5 − √
2(n + 1

2
)

]2

, n = 0, 1, 2, 3.

(19)
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Morse potential plays a very significant role in the vibration-rotation spectra of
diatomic molecules and has been extensively studied by a large number of work-
ers ever since its inception about 85 years ago. The above potential supports only four
bound states; corresponding exact analytical energies are given in Eq. (20) [52]. In
the left panel, our energies for all four states are seen to match exactly with these as
well as B-spline result [53] and generalized pseudospectral method [21]. It is worth
mentioning that for first three states the precision of Table 2 could be reached quite
easily with rmax = 20 a.u. only, while same for the fourth state requires a value of
about 200 a.u. Our second example corresponds to a special case of a general class of
interaction potentials, known as spiked harmonic oscillators (SHO), characterized by
the following functional form,

V (r) = 1

2

[
r2 + λ

rα

]
, α > 0. (20)

In this equation, coupling parameter λ determines strength of perturbative potential,
while positive constant α defines type of singularity at origin. In a relatively simpler
case of α = 1 (termed as charged harmonic oscillator), the system does not exhibit
super-singularity and the Hamiltonian assumes a simplified confined Coulomb poten-
tial type form effectively. It has been pointed out that such a system offers an infinite
set of elementary solutions. The right panel compares seven such elementary solutions
in ground state of a charged harmonic oscillator along with exact results [54]. Note, the
first one (λ = 0) refers to trivial case of an unperturbed Hamiltonian, i.e., a quantum
harmonic oscillator having energy E = 3/2. The other λ’s are taken from solutions
of the polynomial equation [54]. All these ground states are obtained by engaging a
radial grid of 10 a.u. In all these instances, current energies match excellently with
exact values.

Once the accuracy and reliability is established, next in Table 3, we report first six
states of a charged harmonic oscillator belonging to angular quantum number � = 0.
All these states are obtainable from an rmax = 20 a.u. A broad range of the coupling
parameter, viz., λ =±0.001, ±0.01, ±0.1, ±1, ±10 is considered, covering a wide
interaction region. For λ =±0.001, ±0.1 and ±10, the first three states have been
calculated before through a generalized pseudospectral method [20]. Current energies
obtained from imaginary-time evolution technique are in quite good agreement with
these literature values, quoted here in parentheses. While the current results do not
reach the precision of [20] within our present implementation, these are certainly still
very good and almost for all practical purposes, sufficiently accurate. No other results
are available at this time for other states. In addition, for each of these states, the
position expectation values 〈r−1〉 and 〈r〉 are given as well.

At this point, Table 4 gives a comparison of energies obtained in various grids.
For this purpose, two λ values of −0.001 and 10 of the charged harmonic oscillator
are selected. All six eigenvalues are considered for four Nr values, viz., 501, 1001,
2001, 5001, keeping the initial guess same in all occasions. It is clearly seen that, even
the smallest grid produces results accurate up to fourth place of decimal except the
highest state corresponding to λ = 10. For all the states, however, the results improve
with successive increase in Nr , i.e., a denser grid is needed. The simulation box was
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Table 4 First six lowest eigenvalues (a.u.) of charged harmonic oscillator corresponding to l = 0, for two
values of λ, with variations in grid. Nr implies number of radial points

λ n Nr = 501 Nr = 1001 Nr = 2001 Nr = 5001

−0.001 0 1.4994081 1.4994275 1.4994337 1.4994357

1 3.4994911 3.4995136 3.4995271 3.4995298

2 5.4995407 5.4995717 5.4995793 5.4995815

3 7.4995801 7.4996020 7.4996125 7.4996161

4 9.4996278 9.4996374 9.4996400 9.4996416

5 11.4996001 11.4996553 11.4996598 11.4996616

10 0 5.2887423 5.2887418 5.2887417 5.2887417

1 7.0754429 7.0754398 7.0754394 7.0754394

2 8.8981276 8.8981178 8.8981166 8.8981164

3 10.7479984 10.7479717 10.7479674 10.7479670

4 12.6188822 12.6188020 12.6187939 12.6187932

5 14.5063045 14.5061641 14.5061505 14.5061493

roughly 15 a.u. As already mentioned, while such tests are not undertaken for all the
potentials under study, we expect similar findings for other potentials. It may be noted
that the calculations of this table took roughly about 2–5, 7–10, 13–18 and 20–25 s
for Nr = 501, 1001, 2001 and 5001 in an Intel-Xeon X5482 3.20 GHz processor
workstation using double precision arithmetic.

Now, Table 5 reports ground-state energies of SHO for two values of α = 4 (left)
and 6 (right) for small as well as large λs. Note that in the last three decades, there has
been significant interest in this system due to its many fascinating characteristics. One
distinctive feature of such a potential is that once the perturbation λ|r |−α is turned on,
it is impossible to completely turn off the interaction. Also, in the region of α ≥ 5/2,
it exhibits super-singularity. For many other facets of this potential, the reader is
referred to the following references [20,54–62], Both the α values considered can lead
to super-singularity; these have been studied by numerous analytic, semi-analytic as
well as numerical methodologies. Some of these literature results are given here for
comparison. It is seen that the present methodology offers results which are in good
agreement with these. The most accurate results are those from analytic continuation
method [55] and generalized pseudospectral method [20]. The present energies are not
superior to these, but still are excellent and evidently better than many other reference
values.

At last, Table 6 reports some representative � �= 0 eigenvalues of SHO. Two λ
values of 0.001 and 1 are chosen for α = 4, 6 both. Three lowest states corresponding
to small as well as large � values (3, 4, 5, 10, 40) are considered. Literature results are
available for some of the lowest states; and these are appropriately quoted. In all cases,
the present eigenvalues match excellently with these. However they do not reach the
accuracy reported in the references [20,55]. No references are available for higher
states and we present here to illustrate the performance of current approach for � �= 0
situations.
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Fig. 1 The radial probability
distribution functions (a.u.) of
charged harmonic oscillators.
Left and right panels
corresponds to λ = 0.01 and
−10. The two potentials are
shown in (a, f), while (b, g), (c,
h), (d, i), (e, j) refer to the
densities of ground, first, second
and third excited states
respectively, corresponding to
� = 0
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Finally, to show the quality of our wave functions obtained, we depict the radial
distribution functions of charged harmonic oscillator in Fig. 1. Diagrams (a)–(e) in
left panel correspond to the potential (a) (with α = 1, λ = 0.01) and first four
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low-lying state densities respectively, with (b) referring to that of ground state. Sim-
ilarly in (f)–(j) in right panel, plots for potential (f) (with α − 1, λ = −10) and four
lowest states are displayed, with (g) identifying the lowest state. In both cases, den-
sity plots for all states are given in same scale of radial distance. They both carry the
signatures of acceptable eigenfunctions with number of nodes increasing with state
index. It is seen that, in the right side, peak height decreases to a greater extent as one
goes to higher excitations, compared to the potential in left side.

A few words may be devoted to the initial trial function. Most of our calculations
were performed with simple exponential functions as starting guess to launch the
computations. However, several other sample guessed (including some wild) func-
tions were tried to test the efficiency of this formalism. In such cases, the effective
computation time required to achieve convergence of desired accuracy varies with
initial guess. Generally, it was found that, keeping all things unchanged, during itera-
tive process, mixing diffusion function with that from previous time step by a certain
percentage (we employed a 50:50 mixture) increased the rate of convergence. Accu-
racy of the present method depends on density of the grid and propagation time. The
degeneracy in case of symmetric and non-symmetric 2D double-well oscillators [36]
as well as pseudo-degeneracy in 1D double wells [32,34] have been well represented
by this method. It is conceivable that convergence and accuracy of our results could be
further improved by choosing different spatial grid, more appropriate and suitable ini-
tial wave functions, higher-order finite difference schemes as well as higher precision
computation, some of which may be taken up later.

4 Conclusion

Energy eigenvalues, select position expectation values and probability densities of 3D
spherically symmetric potentials are obtained accurately and efficiently by means of
an imaginary time evolution method in conjunction with minimization of an energy
expectation value. Numerical propagation of the resulting diffusion equation eventu-
ally hits ground state, and ensuring orthogonalization to lower states, leads to excited
states in a sequential manner. Comparison with available literature data reveals that
good-quality, meaningful results could be produced in all the occasions concerned.
Thus it could pose a viable alternative to the existing methodologies available for such
systems. This is illustrated for a variety of systems, such as quantum harmonic oscil-
lator, Morse potential, charged harmonic oscillator and spiked harmonic oscillator.
Applicability of the scheme for both s-wave and non-zero � states are demonstrated.
Since, for excited state calculations, the wave function must remain orthogonal to
all lower states of same space and spin symmetry, accurate estimation of such states
would require that the relevant lower states be properly converged in the active grid
space. Future applications of the method to other interacting systems, such as atomic,
molecular potentials, as well as for confinement, may further consolidate its success.
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